Progression in Maths at Ings

Number: Number and Place Value

COUNTING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of $4,8,50$ and 100 ;	count in multiples of 6,7 , 9,25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
COMPARING NUMBERS					
use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100; use <, > and = signs	compare and order numbers up to 1000	order and compare numbers beyond 1000	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
			compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)		
IDENTIFYING, REPRESENTING AND ESTIMATING NUMBERS					
identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		

Progression in Maths at Ings

READING AND WRITING NUMBERS (including Roman Numerals)					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Comparing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)
		tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks (copied from Measurement)		read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	
UNDERSTANDING PLACE VALUE					
	recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
			find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as units, tenths and hundredths (copied from Fractions)		identify the value of each digit to three decimal places and multiply and divide numbers by 10, 100 and 1000 where the answers are up to three decimal places (copied from Fractions)

Progression in Maths at Ings

ROUNDING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			round any number to the nearest 10,100 or 1000	round any number up to 1 000000 to the nearest 10 , 100, 1000,10000 and 100000	round any whole number to a required degree of accuracy
			round decimals with one decimal place to the nearest whole number (copied from Fractions)	round decimals with two decimal places to the nearest whole number and to one decimal place (copied from Fractions)	solve problems which require answers to be rounded to specified degrees of accuracy (copied from Fractions)
PROBLEM SOLVING					
	use place value and number facts to solve problems	solve number problems and practical problems involving these ideas.	solve number and practical problems that involve all of the above and with increasingly large positive numbers	solve number problems and practical problems that involve all of the above	solve number and practical problems that involve all of the above

Progression in Maths at Ings

Number: Addition and Subtraction

NUMBER BONDS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
MENTAL CALCULATION					
add and subtract one-digit and two-digit numbers to 20 , including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot				use their knowledge of the order of operations to carry out calculations involving the four operations

Progression in Maths at Ings

WRITTEN METHODS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	
INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS					
	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.

PROBLEM SOLVING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Progression in Maths at Ings

	solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)			Solve problems involving addition, subtraction, multiplication and division 	

Number: Multiplication and Division

MULTIPLICATION \& DIVISION FACTS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0, and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value)	count in multiples of $6,7,9,25$ and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
	recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
MENTAL CALCULATION					
		write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers

Progression in Maths at Ings

	and progressing to formal written methods (appears also in Written Methods)	by 1; multiplying together three numbers		
show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot		recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)	multiply and divide whole numbers and those involving decimals by 10, 100 and 1000	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$) (copied from Fractions)

MULTIPLICATION \& DIVISION FACTS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0, and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
	recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
MENTAL CALCULATION					
		write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers

Progression in Maths at Ings

Progression in Maths at Ings

					use written division methods in cases where the answer has up to two decimal places (copied from Fractions (including decimals))
PROPERTIES OF NUMBERS: MULTIPLES, FACTORS, PRIMES, SQUARE AND CUBE NUMBERS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			recognise and use factor pairs and commutativity in mental calculations (repeated)	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	identify common factors, common multiples and prime numbers
				know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)
				establish whether a number up to 100 is prime and recall prime numbers up to 19	
				recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed $\left({ }^{3}\right)$	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres $\left(m^{3}\right)$, and extending to other units such as mm^{3} and km^{3} (copied from Measures)

Progression in Maths at Ings

ORDER OF OPERATIONS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
					use their knowledge of the order of operations to carry out calculations involving the four operations
INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS					
		estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)	estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)		use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy

PROBLEM SOLVING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
				solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	

Progression in Maths at Ings

Number: Fractions (including Decimals and Percentages)

COUNTING IN FRACTIONAL STEPS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Pupils should count in fractions up to 10, starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the number line (Non Statutory Guidance)	count up and down in tenths	count up and down in hundredths		
RECOGNISING FRACTIONS					
recognise, find and name a half as one of two equal parts of an object, shape or quantity	recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10.	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (appears also in Equivalence)	

Progression in Maths at Ings

recognise, find and name a quarter as one of four equal parts of an object, shape or quantity		recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators		
COMPARING FRACTIONS				
	compare and order unit fractions, and fractions with the same denominators	compare and order fractions whose denominators are all multiples of the same number		

Progression in Maths at Ings

COMPARING DECIMALS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			compare numbers with the same number of decimal places up to two decimal places	read, write, order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places
ROUNDING INCLUDING DECIMALS					
			round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
EQUIVALENCE (INCLUDING FRACTIONS, DECIMALS AND PERCENTAGES)					
	write simple fractions e.g. $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
			recognise and write decimal equivalents of any number of tenths or hundredths	read and write decimal numbers as fractions (e.g. $0.71=71 / 100$)	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$)
				recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	
			recognise and write decimal equivalents to $1 / 4 ; 1 / 2 ; 3 / 4$	recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction	recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.

Progression in Maths at Ings

Progression in Maths at Ings

			the value of the digits in the answer as ones, tenths and hundredth		are up to three decimal places
					identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
					associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$)
					use written division methods in cases where the answer has up to two decimal places
PROBLEM SOLVING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to non-unit fractions where the answer is a whole number	solve problems involving numbers up to three decimal places	
			solve simple measure and money problems involving fractions and decimas. two decimal places.	solve problems which require knowing percentage and decimal equivantent of $1 / 1,1,4 / 1 / 5$, $2 / 4,4 /$ and those with	

Progression in Maths at Ings

| | | |
| :--- | :--- | :--- | :--- |

Ratio and Proportion

| Statements only appear in Year 6 but should be connected to previous learning, particularly fractions and multiplication and division | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | $\begin{array}{l}\text { Year } 6\end{array}$ |
| | | | | $\begin{array}{l}\text { solve problems involving } \\ \text { the relative sizes of two } \\ \text { quantities where missing } \\ \text { values can be found by } \\ \text { using integer multiplication } \\ \text { and division facts }\end{array}$ |
| | | | | $\begin{array}{l}\text { solve problems involving } \\ \text { the calculation of } \\ \text { percentages for example, } \\ \text { of measures, and such as } \\ \text { 15\% of 360] and the use of }\end{array}$ |
| percentages for | | | | |$]$

Progression in Maths at Ings

Algebra

EQUATIONS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction) solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division)		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically
	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (copied from Addition and Subtraction)				find pairs of numbers that satisfy number sentences involving two unknowns
represent and use number bonds and related subtraction facts within 20 (copied from Addition and Subtraction)					enumerate all possibilities of combinations of two variables

Progression in Maths at Ings

Measurement

COMPARING AND ESTIMATING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
compare, describe and solve practical problems for: lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] mass/weight [e.g. heavy/light, heavier than, lighter than] capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using >, < and =		estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes (also included in measuring)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres (m^{3}), and extending to other units such as mm^{3} and km^{3}.
				estimate volume (e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and cuboids) and capacity (e.g. using water)	
sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
		estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			

Progression in Maths at Ings

MEASURING and CALCULATING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
measure and begin to record the following: * lengths and heights * mass/weight * capacity and volume * time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$)	estimate, compare and calculate different measures, including money in pounds and pence (appears also in Comparing)	use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)
		measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	know the number of minutes in an hour and the number of hours in a day. (appears also in Telling the Time)	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
			read, write and convert time between analogue and digital 12 and 24 -hour clocks	solve problems involving converting between units of time	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three

Progression in Maths at Ings

			(appears also in Converting)		decimal places where appropriate (appears also in Measuring and Calculating)
			solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Telling the Time)	understand and use equivalences between metric units and common imperial units such as inches, pounds and pints	convert between miles and kilometres

Geometry: Properties of Shapes

Progression in Maths at Ings

DRAWING AND CONSTRUCTING									
		draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them		complete a simple symmetric figure with respect to a specific line of symmetry		draw given angles, and measure them in degrees ${ }^{\circ}$)	draw 2-D shapes using given dimensions and angles		
					recognise, describe and build simple 3-D shapes, including making nets (appears also in Identifying Shapes and Their Properties)				
COMPARING AND CLASSIFYING									
Year 1	Year 2	Year 3				Year 4		Year 5	Year 6 compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
	compare and sort common 2-D and 3-D shapes and everyday objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes		use the properties of rectangles to deduce related facts and find missing lengths and angles		compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons		
					distinguish between regular and irregular polygons based on reasoning about equal sides and angles				
ANGLES									
		recognise angles as a property of shape or a description of a turn			know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles				

Progression in Maths at Ings

		identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify: * angles at a point and one whole turn (total 360°) * angles at a point on a straight line and $1 / 2$ a turn (total 180°) * other multiples of 90°	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
		identify horizontal and vertical lines and pairs of perpendicular and parallel lines			

Geometry: Position and Direction

POSITION, DIRECTION AND MOVEMENT					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
describe position, direction and movement, including half, quarter and three-quarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants)
			describe movements between positions as translations of a given unit to the left/right and up/down		draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
			plot specified points and draw sides to complete a given polygon		

Progression in Maths at Ings

Statistics

INTERPRETING, CONSTRUCTING AND PRESENTING DATA					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
	ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
	ask and answer questions about totalling and comparing categorical data				
SOLVING PROBLEMS					
		solve one-step and two-step questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average

